SYNTHESIS OF 4-METHYL FURO(2,3-b)QUINOLINE

P. Shanmugam, and P. Lakshminarayana

Department of Organic Chemistry, University of Madras, Madras-25, India
(Received in UK 10 May 1971; accepted in UK for publication 20 May 1971)

The previous papers 1-3 from this laboratory describe the synthesis of 2:3 dihydrofuro(2,3-b)quinolines, and in no case could the dihydro compound be dehydrogenated to the furoquinoline. The possibility that 3-vinyl-2-quinolones might serve as necessary precursors for the synthesis of furo(2,3-b)quinolines appeared attractive. Several 3-vinyl-2-quinolones have been prepared from 0-amino carbonyl compounds and vinyl acetyl chloride using a procedure similar to that adapted for the preparation of 3(1'propenyl)2-quinolones 2b.

In this communication we would like to report a novel and facile synthesis of 4-methyl furo(2,3-b)quinoline utilising 4-methyl 3-vinyl-2-quinolone 4 (I) (mp. 203-205°). I.R.(CHCl₃) 1639 cm⁻¹ (NH-CO) and 990 cm⁻¹ (CH=CH₂). The chemical evidence for structure I of the vinyl compound was obtained by its reduction to 3-ethyl 4-methyl 2-quinolone 5 (II) and oxidation to 3-carboxy 4-methyl 2-quinolone 6 (III). Addition of Br₂ to I in chloroform gave a quantitative yield of the dibromo compound IV (mp. 243-246° dec.) which on treatment

with excess triethylamine in boiling chloroform furnished the desired furoquinoline V. (mp. 88-89.5° pet. ether) in 95% yield. The same base V was also obtained, but in a very poor yield, from I through expoxidation with perbenzoic acid, followed by heating with PPA. The NMR spectrum of V showed, in addition to a multiplet at δ 7.3 to 8.2 (4H Ar) and a singlet at δ 2.63(3H CH₂), two one proton doublets at δ 7.6 and δ 6.7 which are assigned respectively to the ϵ and ϵ 6 furan protons. The position of absorption as well as the coupling constant (J=2.5 cps) between them are consistant with the values reported for similar protons of furo(2,3-b) quinolines.

V underwent hydrogenolysis with 10% Pd/C and $H_2(60 \text{ lbs.})$ to give 3-ethyl 4-methyl 2-quinolone⁵ II, but use of 2% Pd/C and $H_2(20 \text{ lbs.})$ gave the dihydro base VI^1 .

The extension of this synthetic approach to other furoquinolines is being explored.

The compounds reported here gave satisfactory elemental analysis.

ACKNOWLEDGEMENT

One of us (PLN) wishes to thank the University Grants Commission, New Delhi for a fellowship. Thanks are due to Dr.S. Swaminathan for his encouragement and Dr.K. Nagarajan CIBA Research Center for the NMR spectra.

REFERENCES

- 1. P. Shanmugam, Proc. Ind. Acad. Sci. <u>52</u>, 75 (1960).
- 2. (a) J.P. John and P. Shanmugam, ibid 54, 161 (1961) (b) 55, 227, (1962).
- 3. P. Lakshminarayana, P. Shanmugam, and K.K. Balasubramanyam, Tetrahedron Lett. 57, 4947 (1970).
- 4. P. Shanmugam unpublished.
- 5. A.L. Scarles and H.G. Lindwall, J.Am. Chem. Soc., <u>68</u>, 988 (1946).
- 6. Camps. Archiv.fur.Pharmazie 240, 142.
- 7. A.V. Robertson, Aust. J. Chem. 16, 451 (1963).